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Initialization: Be sure the file NTGUItilityFunctions.m is in the same directory as that from which this
notebook was loaded. Then execute the cell immediately below by mousing left on the cell bar to the
right of that cell and then typing “shift” + “enter”. Respond “Yes” in response to the query to evaluate
initialization cells.

SetDirectory[NotebookDirectory[]];
(» set directory where source files are located =x)
Get ["NTGUtilityFunctions.m"]; (* Load utilities package x)

Purpose

This is the 7th in a series of notebooks in which | work through material and exercises in the magisterial
new book Modern Classical Physics by Kip S. Thorne and Roger D. Blandford. If you are a physicist of
any ilk, BUY THIS BOOK. You will learn from a close reading and from solving the exercises.

Exercise 13.12 Derivation: Joule-Kelvin Coefficient
Verify Eq. (13.60)
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13.5.6 Joule-Kelvin Method of Cooling a Real Gas

Let us return to the contribution Pv to the energy flux. A good illustration of the impor-
tance of this term is provided by the Joule-Kelvin method commonly used to cool gases
(Fig. 13.7). In this method, gas is driven from a high-pressure chamber 1 through a nozzle
or porous plug into a low-pressure chamber 2, where it can expand and cool. We can analyze
the cooling using energy conservation, with the magnitude of the energy flux at the entrance
to the nozzle written as (pyuy + Py)v; (where we neglect the kinetic energy and gravita-
tional terms as negligible). During a short time At, the energy that leaves the high-pressure
chamber 1 is this energy flux into the nozzle times At times the nozzle entrance’s area A, :
AE, = (pyuy + Py)v,At Ay = Hy; here H, is the enthalpy that the departing gas “sample”
had when it was in chamber 1, occupying the volume v;At A,. (Without the Pyv; term in
the flux, we would not get this result.) When this gas sample arrives in the low-pressure
chamber 2, it is far from statistical (thermodynamic) equilibrium, but it soon equilibrates.
After equilibration, it occupies some volume V5, it has done work P,V; on the gas in chamber
2 in order to open up that volume, and it posses an internal energy pauaVs. Correspondingly,
the total energy it has injected into chamber 2 is AE, = (pous + P»)Va = H, (its enthalpy);
cf. the last part of Ex. 5.5. Energy conservation, AFE, = AF,, then guarantees that the
enthalpy H, of this gas sample when it was in statistical equilibrium in chamber 1 is the
same as its enthalpy H, when it has reached statistical equilibrium in chamber 2. Dividing
by the mass of the sample, we see that the enthalpy per unit mass, h, is the same in the two
chambers: hy = ha.

Now, the temperature 7" of the gas, in statistical equilibrium, is some function of enthalpy
and pressure, T = T'(h, P); so we can write the temperature drop between chamber 1 and
chamber 2 as

AT = / jydP, (13.59)
P

where piyx = (0T /OP)y is the so-called Joule-Kelvin coefficient. A straightforward thermo-
dynamic calculation yields the identity

_[or\ _ 1 [d(pD) o
MKk = (W)h = —m (T . (13.60)

The Joule-Kelvin coefficient of an ideal gas [one with P = nkgT = (p/pumy,)ksT| obvi-
ously vanishes. Therefore, the cooling must arise because of the attractive forces (van der
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Analysis and solution

Part (2)

Fluid with mass AM
is adiabatically forced
through porous plug

e

The dynamics of the energy flow are given by

ou
— +V-F=0 (1)
ot

where is the energy density and F is the energy density flux.

iy
U:p(—+u+¢)
2

% V2 P
F=pv|—+h+®|=pv|[—+u+—+0
2 2 o

Here, h, u, etc. are “specific” quantities - the enthalpy per unit mass, the internal energy per unit mass,
etc.

Imagine that a mass AM is forced across the porous plug in an adiabatic manner. For the situation
indicated in the diagram there is no change in the level of the fluid in the gravitational field so the term ®
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is small. Also, the flow in the system is quite small compared with thermal velocities (adiabatic process)
o]

P
F:pv(u+—) 3)
P

The amount of energy associated with the outflow of AM is

P
AE = p(u + —) (vA At) = (energy density) (volume occupied by Am) 4)
o}
Also
P P
AE:p(u+ —)(vAAt): (u+ —)(vaAt):hAM (5)
P P

where h is the specific enthalpy. Thus

AE = hAM = AH (6)

For this outflow, the change in energy is equal to change in enthalpy.

Part (b)

Fluid is adiabatically forced through porous plug P1 > P2

P1 P2

The change in the energy as a fluid element with mass M passes through the plug from region 1 to
region 2 and equilibrates is

AU = AW + AQ = AW (7)

because the process is adiabatic, AQ = 0. Then

AU =U; - Uy = AW (8)

It is important to get the sign right when calculating the work. On the left work is performed on the fluid
to force it through the porous plug. The work performed on the fluid was
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W1:P1V1>0

where V; is the volume of the fluid element with mass M.

In region 2, the fluid element performed work on the environment in order to make space for itself.

W2=P2V2<O

The net positive work that has been performed is

AW:W1—W2 :P1V1—P2V2>0

Thus

AU =U, - Uy =AW = Py Vy - P,V

or

U2+P2V2 =U1+P1 V1

or

Hy =H,

Enthalpy is conserved.

Part (c)

The problem calls for the derivation of an explicit form for
oT
Mot = — |H
oP

Define some quantities and use the constancy of the enthalpy to obtain an expression for pyt

(1)

(13)

(14)

(15)

def[dH] = dH = H[P, T] - H[PO, TO];
def[dP] = dP = P - PO;
def[dT] = dT == T - TO;
def[dS] = dS == S[P, T] - S[PO, TO];

w[1] = H[P, T] = NormaleSeries[H[P, T], {P, PO, 1}, {T, Te, 1}] /.
{Sol[def[dH], H[P, T]], Sol[def[dP], P], Sol[def[dT], T]} /.
{P@ > P, TO -» T} // Sol[#, dH] & // RE

dH = dTH®Y [P, T] +dPH™L® [P, T] +dPATHLY [P, T]
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W[2] = w[l] /. {dP » e€dP, dT » edT} /. e"-/’™! 5, 0 /. e » 1

dH = dTH®Y [P, T] + dPHL® [P, T]

def[pIT] = pIT = dT /dP

dT
uIT = —
dp
Ww[3] = Sol[w[2] /. dH » @, dT] // RE;
w[3] = MapEqn[(# /dP) &, w[3]] /. Sol[def[uIT], dP]
H® [p, T]
puIT = - ————
H®D [P, T]

The denominator is a common thermodynamic quantity, the specific heat at constant enthalpy

def[Cp] = Cp = H@®V [P, T]

Cp =H®@L [P, T)

w[4] = w[3] /. Sol[def[Cp], H@Y [P, T]]

H1.8) p, T]
Cp

udT = -

It remains to express the numerator in terms of familiar (and measurable) quantities

Proceed by making use of definition of H (differential form)

W[5] = dH = dU + dPV[T] + PdV

dH = dU+dVP +dPV[T]

and the fundamental thermodynamic relationship

w[6] = dU == TdS - PdV

dU = -dVP+dST

Then

W[7] = Sol[w[6], dS] /. Sol[w[5], dU] // RE // ExpandAll

di  dPVI[T]
ds = — -
T T

Recall w[2]



TB 13.12 Joule-Kelvin 02-01-18.nb | 7

w[8] = w[7] /. Sol[w[2], dH] // ExpandAll

dPV[T] dTH®D [P, T] dPH®® [P, T]
ds = - + N
T T T

Also, in general,

w[9] = (S[P, T] /. Sol[def[dS], S[P, T]1]) =
(NormalesSeries[S[P, T], {P, PO, 1}, {T, Te, 1}] /.
{Sol[def[dP], P], Sol[def[dT], T]}) // Sol[#, dS] & // RE

ds == d1s©@% [pe, TO] +dPS*-? [P@, TO] + dP AT S*-Y) [Po, TO]

Neglect quadratic terms in the expansion

w[10] = w[9] /. dPdT - @ /. {P@ - P, T - T}

dS = dTS®Y [P, T] +dP S [P, T]

Equate coefficients of the previous expressions

w[11l] = Coefficient[w[10][2]], dT] == Coefficient[w[8][2] , dT]

H®1 [p, T]
T

S@Lp, T] =

w[12] = Coefficient[w[10][2]], dP] == Coefficient[w[8][2] , dP]

V[T] H®® [P, T]
T T

to obtain relationships between the partial derivatives of S and H.

Cross differentiate to obtain Maxwell relations

w[13] = MapEqn[D[#, P] &, w[11]]

HLD [P, T)
T

SLY P, T] =

w[14] = MapEqn[D[#, T] &, w[12]]

VIT] V[T] H®O[p, T] HOL [P, T
SL1 [p, T] - (] vI[(T] [P, T] [P, T]
T2 T T2 T

Equate these expressions
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w[15] = w[13][2] == w[14][2]

HLD (P, T]  V[T] VI[T] HLO [P, T] HLD [P, T]
T T2 T T2 T

Finally, an expression for dHdP is obtained

w[16] = Sol[w[15], H®® [P, T]]

HL® P, T] 5 V[T] -TV/[T]

and

w[1l7] = w[4] /. w[1l6]

VIT] - TV [T]
Cp

uIT = -

BT express pyr in terms of the density p(T)

w[18] = w[17] /. V - Function[{T}, 1/p[T]] // ExpandAll

.. Tem
CpoIT] CpplT)?

BT write this as

W[19] = pIT == HoldForm[ﬁD[D[T] T, T1]
po

which is the same as the derived expression.

Ww[20] = (w[19][[2]] // ReleaseHold) = w[18][2] // Simplify

True

Part (d)

The enthalpy is

H=UT)+PV

Foranidealgas PV=NkgT
Thus
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H = H(T) (17)

only. From above, the process satisfies

Hi=H, (18)

and so the temperature does not change.
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Visualization

Module[{L = 1, H = 2, cylinder, plug, piston, range, lab, labP, G},
range = {{-L, L}, {-H, H}};
cylinder = {LightBlue, Rectangle[1/2{-L, -H}, 1/2{L, H}], {Black,
ine[{{-L/2, -H/2}, {t/2, -/2}}], Line[{{-L/2,1/2}, {L/2, W/2}}] }}s
plug = {Directive[Black, Dashed], Line[{{L/2,H/2}, {L/2,-H/2}}]};
piston = {Directive[Black, Thick],
Line[{{-L/2,H/2}, {-L/2, -H/2}}], Line[{{-L/2 - L/4, 0}, {-L/2,0}}] };
labP = {Black, Text[Stl["P"], {©, H/4}1};
lab = St1["Fluid with mass AM\n is adiabatically forced\nthrough porous plug"];
G[1] = Graphics[{cylinder, plug, piston, labP},
Axes - None, AspectRatio - 1, PlotRange - range, PlotLabel - lab];

cylinder = {LightBlue, Rectangle[{@.9 L/2, -H/Z}, {L/Z, H/Z}], {Black,
ine[{{-L/2, -H/2}, {t/2, -H/2}}], Line[{{-L/2, 1/2}, {L/2,W/2}}] }}s

piston = {Directive[Black, Thick], Line[{{e.9L/2,H/2}, {e.9L/2, -H/2}}]
Line[{{e.9L/2-L/4,0}, {8.9L/2,0}}] };

G[2] = Graphics[{cylinder, plug, piston}, Axes - None,
AspectRatio » 1, PlotRange - range];

Grid[{{G[1]}, {G[Z]}}]]

3

Fluid with mass AM
is adiabatically forced
through porous plug
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Module[{L = 1, H = 1/2, cylinder, plug, pistonl, piston2, range, lab, labP, G},
range = {{-L, L}, {-H, H}};
cylinder = {LightBlue, Rectangle[{—L/z, -H}, {3L/4, H}],
{Black, Line[{{-L, -H}, {L, -H}}], Line[{{-L, H}, {L, H}}] }}3
plug = {Directive[Black, Thick, Dashed], Line[{{©, H}, {®, -H}}] };
pistonl = {Directive[Black, Thick],
Line[{{-L/2, H}, {-L/2, -H}}], Line[{{-L/2 - L/4, 0}, {-L/2,0}}] };
piston2 = {Directive[Black, Thick], Line[{{3L /4, H}, {3L/4, -H}}]1,
Line[{{3L /4, 0}, {L, ©}}] };
labP = {Black, Text[Stl["P1"], {-L/4, H/4}], Text[St1["P2"], {L/4, H/4}]1};
lab = St1["Fluid is adiabatically forced through porous plug P1 > P2"];
G[1] = Graphics[{cylinder, plug, pistonl, piston2, labP},
Axes - None, AspectRatio - 1/2, PlotLabel - lab] ]

Fluid is adiabatically forced through porous plug P1 > P2

P1 P2
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https://cosmolearning.org/video-lectures/joule-thompson-throttling-adiabatic-cooling-2/

Very easy to read book on thermodynamics of fluids
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THE JOULE-THOMPSON EXPERIMENT
A further test of intermolecular forces in real gases.
Upstream |Throttle  Downstream oH oH
eressure | pressure AH =[—] AT+(—] AP =0
| or ), oP ),
P -
P l I Py )
=, 7 === Imagine a sample of gas pushed through a porous
u a plug, in an isolated tube (adiabatic system). The
temperature is measured on each side of the plug.
Analysis
w=pV -pV,
P o Pivi- Py
Wi Since AU = U-U = w (because g = 0),
Uf-\‘-pjlff = U +pV,
H; = H, ie. AH=0
w This is a constant enthalpy (isenthalpic) process.
What is
L I L - [B_HJ =c, M= _(a_H)
[} ' ] or ), oP ),
(

Derivation of Joule-Thompson coefficient
https://cosmolearning.org/video-lectures/joule-thompson-throttling-adiabatic-cooling-2/

Useful notes on thermodynamics (Good source for derivation of Joule-Thompson coefficient)
http://www.physics.ucc.ie/apeer/PY2104/chap5.pdf




